Category: Technology

Apache HTTP Sandbox With Docker

I set up a quick Apache HTTPD sandbox — primarily to test authentication configurations — in Docker today. It was an amazingly quick process.

Install an image that has an Apache HTTPD server:    docker pull httpd
Create a local file system for Apache config files (c:\docker\httpd\httpd.conf for main config, c:\docker\httpd\conf.d for all of the extras like ssl.conf and php.conf, plus web sites), and c:\docker\httpd\vhtml for the web site content)
Launch the container: docker run -detach –publish 80:80 –publish 443:443 –name ApacheWebServer –restart always -v /c/docker/httpd/httpd.conf:/etc/httpd/conf/httpd.conf:ro -v /c/docker/httpd/conf.d/:/etc/httpd/conf.d/:ro -v /c/docker/httpd/vhtml/:/var/www/vhtml/:ro httpd

Shell into it (docker exec -it ApacheWebServer bash) to look around, or just access http://localhost from the Docker host.

PPM Via Windows Authenticated Proxy

The office proxy used to use BASIC authentication. Which was terrible: transmission was done over clear text. Some years ago, they implemented a new proxy server that was capable of using Kerberos tickets for authentication (actually the old one could have done it too – I’ve set up the Kerberos realm on another implementation of the same product, but it wasn’t a straight forward clickity-click and you’re done). Awesome move, but it did break everything that used the HTTP_PROXY environment variable with creds included (yeah, I have a no-rights account with proxy access and put that in clear text all over the place). I just stopped using wget and curl to download files. I’d pull them to my Windows box, then scp them to the right place. But every once in a while I need a new perl module that’s available from ActiveState’s PPM. I’d have to fetch the tgz file and install it manually.

Until today — I was configuring a new Fiddler installation. Brilliant program – it’s just a web proxy that you can use for debugging purposes, but it can insert itself into HTTPS communications and provide clear text rendering of encrypted sessions too. It also proxies proxy credentials! There’s a config to allow remote hosts to connect – it’s normally bound to 127.0.0.1:8888, but it can bind to 0.0.0.0:8888 as well. If you have your web browser open & visit a site through the proxy server (i.e. you make sure the browser is authenticating fine) … set your HTTP_PROXY to http://127.0.0.1:8888 (or whatever means the specific program uses to configure a proxy). Voila, PPM hits Fiddler. Fiddler relays the request out to the proxy using the Kerberos token on your desktop. Package installs. Lot of overhead just to avoid unzipping a file … but if you are installing a package with a dozen dependencies … well, it’s a lot quicker than failing your install a dozen times and getting the next prereq!

PHP: Windows Authentication to MS SQL Database

I’ve encountered several people now how have followed “the directions” to allow their IIS-hosted PHP code to authenticate to a MS SQL server using Windows authentication … only to get an error indicating some unexpected ID is unable to log into the SQL server.

Create your application pool and add an identity. Turn off fastcgi.impersonate in your php.ini file. Create web site, use custom application pool … FAIL.

C:\Users\administrator.RUSHWORTH<%windir%\system32\inetsrv\appcmd.exe list config "Exchange Back End" /section:anonymousAuthentication
<system.webServer>
  <security>
    <authentication>
      <anonymousAuthentication enabled="true" userName="IUSR" />
    </authentication>
  </security>
</system.webServer>

The web site still doesn’t pick up the user from the application pool. Click on Anonymous Authentication, then click “Edit” over in the actions pane. Change it to use the application pool identity here too (why wouldn’t it automatically do so when an identity is provided?? no idea!).

C:\Users\administrator.RUSHWORTH<%windir%\system32\inetsrv\appcmd.exe list config "Exchange Back End" /section:anonymousAuthentication
<system.webServer>
  <security>
    <authentication>
      <anonymousAuthentication enabled="true" userName="" />
    </authentication>
  </security>
</system.webServer>

I’ve always seen the null string in userName, although I’ve read that the element may be omitted entirely. Once the site is actually using the pool identity, PHP can authenticate to SQL accounts using Windows authentication.

Facebook’s Offensive Advertising Profiles

As a programmer, I assumed Facebook used some sort of statistical analysis to generate advertising categories based on user input rather than employing a marketing group. A statistical analysis of the phrases being typed is *generally* an accurate reflection of what people type, although I’ve encountered situations where their code does not appropriately weight adjectives (FB thought I was a Trump supporter because incompetent, misogynist, unqualified, etc didn’t clue them into my real beliefs). But I don’t think the listings causing an uproar this week were factually wrong.
 
Sure, the market segment name is offensive; but computers don’t natively identify human offense. I used to manage the spam filtering platform for a large company (back before hourly anti-spam definition updates were a thing). It is impossible to write every iteration of every potentially offensive string out there. We would get e-mails for \/|@GR@! As such, there isn’t a simple list of word combinations that shouldn’t appear in your marketing profiles. It would be quite limiting to avoid ‘kill’ or ‘hate’ in profiles too — a group of people who hate vegetables is a viable target market. Or those who make killer mods to their car.
 
FB’s failing, from a development standpoint, is not having a sufficiently robust set of heuristic principals against which target demo’s are analysed for non-publication. They may have considered the list would be self-pruning: no company is going to buy ads to target “kill all women”. Any advertising string that receives under some threshold of buys in a delta-time gets dropped. Lazy, but I’m a lazy programmer and could *totally* see myself going down that path. And spinning it as the most efficient mechanism at that. To me, this is the difference between a computer science major and an information sciences major. Computer science is about perfecting the algorithm to build categories from user input and optimizing the results by mining purchase data to determine which categories are worth retaining. Information science teaches you to consider the business impact of customers seeing the categories which emerge from user input. 
 
There are ad demo’s for all sorts of other offensive groups, so it isn’t like the algorithm unfairly targeted a specific group. Facebook makes money from selling advertisements to companies based on what FB users talk about. It isn’t a specific attempt to profit by advertising to hate groups; it’s an attempt to profit by dynamically creating marketing demographic categories and sorting people into their bins.
This isn’t limited to Facebook either – any scenario where it is possible to make money but costs nothing to create entries for sale … someone will write an algorithm to create passive income. Why WOULDN’T they? You can sell shirts on Amazon. Amazon’s Marketplace Web Service allows resellers to automate product listings. Custom write some code to insert random (adjectives | nouns | verbs) into a template string then throw together a PNG of the logo superimposed on a product. Have a production facility with an API to order, make the product once it has been ordered, and you’ve got passive income. And people did. I’m sure some were wary programmers – a sufficiently paranoid person might even have a human approve the new list of phrases. Someone less paranoid might make a banned word list (or even a banned word list and source one’s words from a dictionary and look for the banned words in the definition too). But a poorly conceived implementation will just glom words together and assume something stupid/offensive just won’t sell. Works that way sometimes. Bad publicity sinks the company other times.
 
The only thing that really offends me about this story is that unpleasant people are partaking in unpleasant conversations. Which isn’t news, nor is it really FB’s fault beyond creating a platform to facilitate the discussion. Possibly some unpleasant companies are targeting their ads to these individuals … although that’s not entirely FB’s fault either. Buy an ad in Breitbart and you can target a bunch of white supremacists too. Not creating a marketing demographic for them doesn’t make the belief disappear. 

Basic Security Or Paranoia

We have Amazon’s smart speakers, so I don’t know if this is true for Google or Apple digital assistants. But the Alexa series of speakers has a default wake word and several non-default options you can elect to use instead. Never use the default — that’s a good general security maxim. We had other factors in our wake word decision – a friend of Scott’s has a daughter whose name is quite close to Alexa and I foresaw the speaker going crazy if they’d speak of her. But the fact is, day 0 of the device … I expected advertisers to incorporate “Alexa, give me more info on product XYZ” in their ads. Aaaand now we have South Park season 21’s first episode.

This is just goofy stuff – maybe words you don’t want replaying at inopportune moments, maybe an alarm way too early in the morning for you. Remember TV commercials that asked kids to hold the telephone handset up to the screen and then played DTMF to ring the order hotline? Alexa, call 800-###-####. Hell, they could order Amazon products on your credit card. Something like ShopSafe (a unique card number with a low limit that actually rejects purchases over that limit) can be tied to your account. It’s extra work to keep updating the card on your account, but I’d rather Alexa buy 12$ of something I didn’t want than 250$. Then our speakers do not have unfettered access to my credit card – there’s a pin required to make purchases. I’m sure that won’t stop your kid who overhears the code from using it, but it prevents television programs, radio shows, and party-goers from buying random junk as a joke.

Checking Supported TLS Versions and Ciphers

There have been a number of ssl vulnerabilities (and deprecated ciphers that should be unavailable, especially when transiting particularly sensitive information). On Linux distributions, nmap includes a script that enumerates ssl versions and, per version, the supported ciphers.

[lisa@linuxbox ~]# nmap -P0 -p 25 –script +ssl-enum-ciphers myhost.domain.ccTLD

Starting Nmap 7.40 ( https://nmap.org ) at 2017-10-13 11:36 EDT
Nmap scan report for myhost.domain.ccTLD (#.#.#.#)
Host is up (0.00012s latency).
Other addresses for localhost (not scanned): ::1
PORT STATE SERVICE
25/tcp open smtp
| ssl-enum-ciphers:
| TLSv1.0:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) – A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) – A
| compressors:
| NULL
| cipher preference: server
| TLSv1.1:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) – A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) – A
| compressors:
| NULL
| cipher preference: server
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (dh 2048) – A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (rsa 2048) – A
| TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (dh 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CCM_8 (dh 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CCM (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (dh 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CCM_8 (dh 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CCM (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (dh 2048) – A
| TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 (rsa 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (dh 2048) – A
| TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 (rsa 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (dh 2048) – A
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 2048) – A
| TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 2048) – A
| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) – A
| TLS_RSA_WITH_AES_256_CCM_8 (rsa 2048) – A
| TLS_RSA_WITH_AES_256_CCM (rsa 2048) – A
| TLS_RSA_WITH_AES_128_GCM_SHA256 (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CCM_8 (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CCM (rsa 2048) – A
| TLS_RSA_WITH_AES_256_CBC_SHA256 (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 (rsa 2048) – A
| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_AES_128_CBC_SHA (rsa 2048) – A
| TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 2048) – A
| compressors:
| NULL
| cipher preference: server
|_ least strength: A

Nmap done: 1 IP address (1 host up) scanned in 144.67 seconds

Security Standards For Financial Information

A long time ago, processors of credit card information didn’t have any standards. And they’d lose your data. People didn’t like that, and some type of regulation had to be put on the industry. The credit card processors got together and formed an initiative to form their own regulations – PCI. They were a lot more concerned with the regulation’s impact on profitability than government regulations would have been. The PCI standards were fairly effective.

And now one of the credit bureaus has lost a huge amount of personal data – including social security numbers and account numbers that I don’t get why were stored in anything other than a one-way hash in the first place. But the bigger question is how are these credit bureaus able to operate with standards that are less strict than the industry-association generated PCI standards? My guess is that there will be a credit bureau industry association writing security standards in the next week or so. If there isn’t an industry association forming to ensure my social security number and account numbers aren’t stored in clear text on web-accessible servers at credit bureaus … I should hope the government would intervene and mandate a certain level of security.

Equifax Hack

First of all, saying half the population of the United States has had their personal information stolen might be accurate, but it’s the good marketing spin. 2016 numbers had 249,485,228 adults in the United States. That’s 57% of people over 18 who have had their personal data stolen. Now there are people with no credit history. It’s a bit of a thing when you first want to rent a flat or get a credit card … you have no credit history, and can’t get credit until you have one. Last I read, it was something like 14% of adults who have no credit record — meaning Equifax gave up information on 66% of the credit-having population.

Leaving aside the marketing spin on numbers, though, why the hell is a credit bureau storing my personal information in a retrievable format instead of a one-way hash? Performance, I assume … so I guess my question really is why were a couple of clock cycles considered more important than the security of my data? Some of the data is probably maintained in clear text because they use heuristic matching to link incoming data to entities. I’m guessing my info comes in with a name, address, creditor name, and account number. And they’ve got to be able to match up the thirty different iterations of my address to ingest the data. But there’s no reason for the account number to be stored unhashed – store the last two or three digits in a new column for display (Your XYZ account ending in ###). And there’s sure as hell no reason for the SSN to be stored unhashed – even if they’d have to store the full one hashed and the last four in another hash because some data doesn’t come in with full SSNs.

ZoneMinder After Upgrade

We recently updated from ZoneMinder 1.30 to 1.34 – easy as can be, ran the DB update script and everything came right online. Except … our home automation system hasn’t been able to access the system. OpenHAB reports that the bridge is offline. And we’re getting 404 errors in all of the /zm/api calls in access_log.

Turns out the API was offline because when the new package came down … there was a zoneminder.conf.rpmnew in the Apache conf.d directory. Can’t even say I found this intentionally – I wanted to check the Apache config file to see if it had anything about the api directory, did a directory listing, and said oooooh!

[lisa@fedora01 conf.d]# ll zone*
-rw-r–r– 1 root root 1990 Jul 29 18:13 zoneminder.conf
-rw-r–r– 1 root root 1990 Aug 28 22:34 zoneminder.conf.rpmnew

They’ve changed a few of the sub-directories and added components to the config. As soon as I renamed zoneminder.conf to zoneminder.conf.old, copied zoneminder.conf.rpmnew to zoneminder.conf, and repeated a few config tweaks we had made for the original installation … restarted Apache and voila, we can fetch /zm/api/host/getVersion.json and get values. So if you’re getting odd 404 errors and CakePHP “/zm/api” not found errors maybe you forgot to update your config with changes from the rpmnew file.